Ex 3 p. 314

La position de l'écran a été modifié, afin que l'image se forme sur celui-ci. Plus près ou plus loin, l'image perçue aurait été floue. [polysemisme]

Ex 4 p. 314

- 1. On peut utiliser la méthode d'autocollimation. On accole un miroir à la lentille, puis on déplace l'ensemble miroir objet de manière à obtenir une image nette superposée à l'objet. La distance lentille-objet correspond alors à la distance focale de la lentille.
- On peut aussi de manière plus approximative, former l'image d'un objet relativement loin (considéré à l'infini). La distance lentille-écran est la distance focale de la lentille.

Ex 7 p. 314

$$x_A = -6 \text{ cm}$$
$$f' = 10 \text{ cm}$$

On cherche $x_{A'}$.

$$\begin{split} \frac{1}{x_{A\prime}} - \frac{1}{x_A} &= \frac{1}{f\prime} \\ \frac{1}{x_{A\prime}} &= \frac{1}{f\prime} + \frac{1}{x_A} \\ x_{A\prime} &= \frac{1}{\frac{1}{f\prime} + \frac{1}{x_A}} \\ x_{A\prime} &= \frac{1}{\frac{1}{10} + \frac{1}{-6}} \\ x_{A\prime} &= -15 \text{ cm} \end{split}$$

Ex 19 p. 314

1.

- a. Dans le cas où l'objet est très éloigné, $\frac{1}{x_A} \to 0$
- b. Lorsqu'on regarde très loin, $x_A = f' = 17$ cm
- 2. Lorsqu'on accomode, la distance focale de la lentille (le cristallin) est modifiée.

3.
$$f' = \frac{1}{\frac{1}{x_{A'}} - \frac{1}{x_A}}$$
$$f' = \frac{1}{\frac{1}{1.7} - \frac{1}{-30}}$$
$$f' = 1,61 \text{ cm}$$

Ex 23 p. 314

1. L'image est réelle car elle apparaît sur un écran. Elle est renversée car elle est produite à l'aide d'une lentille convergente.

2.
$$\frac{1}{x_{A'}} - \frac{1}{x_A} = \frac{1}{f'}$$

$$\frac{1}{x_A} = \frac{1}{X_{A'}} - \frac{1}{f'}$$

$$x_A = \frac{1}{\frac{1}{X_{A'}} - \frac{1}{f'}}$$

$$x_A = \frac{1}{\frac{1}{170} - \frac{1}{5.0}}$$

$$x_A = -5, 15 \text{ cm}$$

3.
$$\gamma = \frac{x_{A\prime}}{x_A}$$
$$\gamma = \frac{170}{-5.15}$$
$$\gamma = -33 \text{ cm}$$

$$\begin{array}{l} \text{donc } y_B = \frac{y_{B\prime}}{\gamma} \\ y_B = \frac{12}{-33} \\ y_B = -0.36 \ \text{ cm} \end{array}$$

Ex 8 p. 314

D'après l'énoncé, $\gamma = -\frac{1}{2}$

Ex 9 p. 314

1.
$$\gamma = \frac{-4.5}{3}$$

 $\gamma = -1, 5$
2. $\gamma = \frac{x_{A'}}{x_A}$
 $x_{A'} = \gamma \times x_A$
 $x_{A'} = -1.5 \times -5$
 $x_{A'} = 7.5$ cm

Ex 12 p. 314

- **1.** *y* est positif, ce qui signife que l'image est droite.
- **2.** $|\gamma| > 1$, l'image est donc plus grande que l'objet.

Ex 13 p. 314

Image γ	+0,5	-1,5
plus petite que l'objet	oui	non
plus grande que l'objet	non	oui
droite	oui	non
renversée	non	oui

Ex 16 p. 315

- 1. $\gamma = \frac{-10}{5} = -2$
- 2. L'image est réelle (car dans l'espace objet), renversée (car $\gamma < 0$), plus grande que l'objet ($|\gamma| > 1$)

Ex 18 p. 314

- 1. Ce programme permet de déterminer le grandissement à partir de f' et de x_A .
- **2.** À la ligne 11, XAprime est calculé à l'aide de la formule de conjugaison.
- 3.

if abs(gamma)>1: L'image est plus grande que l'objet

Corrections 1^{re} - Chap. 3

if abs(gamma)<1 : L'image est plus petite que l'objet

4.

```
if gamma>0 :
   print("L'image est droite")
else :
   print("L'image est renversée")
```

Ex 10 p. 314

Une image réelle s'observe sur un écran contrairement à une image virtuelle.

Ex 11 p. 314

À travers la loupe, il s'agit d'une image virtuelle. L'image sur l'écran est réelle.

Ex 14 p. 314

L'image est :

- réelle (car dans l'espace image)
- renversée
- plus petite que l'objet

Ex 15 p. 314

1. 2. L'image est virtuelle, droite et plus grande que l'objet.

Ex 17 p. 314

L'image est renversée, réelle et plus grande que l'objet.

Ex 20 p. 314

1.
$$\overline{OF'} = 15 \text{ cm}$$

 $x_A = -9 \text{ cm}$

2. a.
$$x_{A'} = -7.5$$
 cm

b. A'B'
$$\approx 3.9 \text{ cm}$$

$$\frac{1}{x_{A'}} - \frac{1}{x_A} = \frac{1}{f'}$$

$$\frac{1}{x_{A'}} = \frac{1}{x_A} + \frac{1}{f'}$$

$$x_{A'} = \frac{1}{\frac{1}{x_A} + \frac{1}{f'}}$$

A.N.
$$x_A = \frac{1}{\frac{1}{-9.0} + \frac{1}{15.0}}$$

$$x_{A\prime} = -22.5 \,\, \mathrm{cm}$$
4. $\gamma = \frac{x_{A\prime}}{x_A} = \frac{y_{B\prime}}{y_B}$
 $y_{B\prime} = \frac{x_{A\prime} \times y_B}{x_A}$
 $y_{B\prime} = \frac{-22.5 \times 1.5}{9}$
 $y_{B\prime} = -3.75 \,\, \mathrm{cm}$

Ex 22 p. 314

- Stratégie (à l'envers)
 - 3) pour déterminer f' (avec la relation de conjugaison), il nous manque $x_{A'}$

- 2. pour déterminer $x_{A'}$ avec la relation de grandissement, il nous manque γ .
- 1) pour déterminer γ , nous pouvons mesurer y_B et $y_{B'}$. La photo préserve les proportions.

1.
$$\gamma = \frac{3.0}{1.0}$$

2. $x_{A'} = \gamma \times x_A$
3. $f' = \frac{1}{\frac{1}{x_{A'}} - \frac{1}{x_A}}$
 $f' = \frac{1}{\frac{1}{x_A \times \gamma} - \frac{1}{x_A}}$
A.N. $f' = \frac{1}{\frac{1}{-8 \times 3} - \frac{1}{-8}}$
 $f' = 12$ cm

Ex 24 p. 314

1. $\frac{1}{x_{A'}} - \frac{1}{x_A} = \frac{1}{f'}$ $\frac{1}{x_{A'}} = \frac{1}{f'} + \frac{1}{x_A}$ $x_{A'} = \frac{1}{\frac{1}{f'} + \frac{1}{x_A}}$ $A.N. \qquad x_{A'} = \frac{1}{\frac{1}{15.0} + \frac{1}{-18.0}}$ On cherche $x_{A'}$. $x_{A'} = 90 \text{ cm}$

- 2.
- **3.** a. L'image est positionnée à environ 90,0 cm. Elle mesure 34 cm.
 - b. Le grandissement vaut $\frac{x_{A'}}{x_A} = \frac{-34}{19} = -4,9$
- 4. γ est négatif, ce qui signifie que l'image est renversée.

Ex 26 p. 314

1. La distance entre la rétine et le cristallin est fixe, pour voir des objets à différentes distances il faut modifier la distance focale du cristallin.

2.
$$\frac{1}{f'} = \frac{1}{x_{A'}} - \frac{1}{x_A}$$
$$\operatorname{donc} \ f' = \frac{1}{\frac{1}{x_{A'}} - \frac{1}{x_A}}$$
$$A.N. \qquad f' = \frac{1}{\frac{1}{1.56} - \frac{1}{-10^5}}$$
$$x_{A'} = 1, 6 \text{ cm}$$

3.
$$\gamma = \frac{\overline{OA'}}{\overline{OA}} = \frac{\overline{A'B'}}{\overline{AB}}$$
$$\operatorname{donc} A'B' = \frac{\overline{AB \cdot OA'}}{\overline{OA}}$$
$$A.N. \overline{A'B'} = \frac{10 \times 1.6}{-1.0 \cdot 10^5}$$
$$\overline{A'B'} = -1.6 \cdot 10^{-6} \text{ m, soit } 1,6 \text{ } \mu\text{m}$$

4. Les photorécepteurs sont probablement beaucoup plus gros que ceux de l'aigle. S'ils sont supérieurs à 1,6 μm, l'individu ne perçoit pas l'objet.

Ex 28 p. 314

1. L'image de l'objet photographié est réelle car elle est visible sur un écran.

Corrections1re - Chap. 3

2. a. On applique la relation de conjugaison quand
$$\frac{1}{x_{A'}}-\frac{1}{x_A}=\frac{1}{f'}$$

$$\frac{1}{x_{A'}}-0=\frac{1}{f'}$$

$$x_{A'}=f'$$

$$x_a \to \infty$$
: A.N. $x_{A\prime} = 60$ mm

- b. En utilisant l'échelle proposée sur la photographie, on trouve une distance entre la fente et l'objectif égale à 60 mm environ.

c. Cette distance est égale à la distance focale
$$f'$$
.

3. a. $\gamma = \frac{x_{A'}}{x_A}$

$$\gamma = \frac{60 \cdot 10^{-3}}{-60 \cdot 10^{-2}} \gamma = -0, 10$$
b. $\gamma = \frac{y_{B'}}{y_B}$

$$y_B = \frac{y_{B'}}{\gamma}$$
A.N. $y_B = \frac{46 \cdot 10^{-3}}{-0.1}$

$$y_B = 46 \cdot 10^{-2} \text{ m, soit } 46 \text{ cm}$$

L'objet ne pourra pas dépasser la taille de 46 cm pour remplir entièrement la photographie.

Ex 29 p. 314