I Étude de la chute libre verticale d'une balle

- ► Charger le logiciel Pymecavidéo et sélectionner Fichier / ouvrir une vidéo et charger le fichier chute_balle.avi
- Cliquer sur *Changer d'origine* et mettre l'origine du repère à la première position de la balle

 Cocher la case ordonnées vers le bas. 	M0	+	
 Définir l'échelle en indiquant que la règle mesure 1,0 m. Attention pour définir 	M1	+	$\Delta t = 50 \text{ ms}$
la longueur il faut maintenir le clic d'une extrémité à l'autre de la règle.	M2		
 Cliquer sur démarrer et procéder aux pointages des positions. 	M3	+	
1. En utilisant les données de l'ongle <i>coordonnées</i> , calculer la valeur de la vitesse v_2 au point M_2 en utilisant la formule : $v_2 \approx \frac{M_2 M_3}{\Delta t} = \frac{Y_3 - Y_2}{\Delta t}$	M4	+	
2. Calculer en utilisant la même méthode les vitesses v_5 au point M_5 et v_8 au point M_8 . Expliciter les formules utilisées.	M5	+	
 Tracer les vecteurs vitesse v ₂, v ₅ et v ₈ sur la chronophotographie ci-contre en utilisant l'échelle 1 cm → 2 m/s Caractériser la trajectoire de la balle en choisissant plusieurs adjectifs parmi les 	M6	+	
 termes suivants : immobile, rectiligne, curviligne, parabolique, circulaire, uniforme, accéléré et décéléré. 5. Compléter le texte suivant : Caractéristique du vecteur vitesse : 	М7	+	
 Direction : la direction des vecteurs vitesse est Sens : les vecteurs vitesses sont orientés Longueur : la longueur des vecteurs vitesse	M8	+	
Validation professeur 1	M9	+	

II Glissement d'une pierre de curling sur la glace

• Ouvrir maintenant le fichier *curling.mp4*.

Un joueur de curling lance une « pierre » en direction de la cible appelée « maison ». La pierre de curling glisse librement sur la glace. La « maison » comporte une série de cercles concentriques. Le plus grand cercle bleu a pour diamètre 3,66 m.

Commencer le pointage à partir du moment où la caméra est fixe par rapport à la glace. Définir l'échelle et placer le repère judicieusement

placer le repère judicieusement.

- Réaliser le pointage du mouvement de la pierre jaune qui part sur la gauche.
- ▶ Tracer les vecteurs vitesses avec *Pymecavidéo* en allant dans l'onglet *trajectoire* puis en sélectionnant *montrer*

les vecteurs vitesses. Choisir une échelle de 100 px pour 1 m/s.

6. Compléter le doc ci-dessous en ajoutant les vecteurs vitesse.

2 ^{de}		TP n°10 – V	Vecteur vitesse 2024 – 2025
		+	7. Compléter le texte suivant : Les points sontet
		+	Donc le mouvement de la balle est et
	+		La longueur des vecteurs vitesses
	+		On en déduit que le vecteur vitesse est
			au cours de ce mouvement
	+		
	+		
	+		_
+			
+			·
			-
+			

Mouvement parabolique d'une boule de pétanque Ш

- Refaire le travail précédent avec la vidéo *basket.avi*.
- Définir l'échelle judicieusement et réaliser le pointage quand le ballon est en l'air. ►
- Afficher les vecteurs vitesse en choisissant une échelle de 50 px par m/s. ►
- Compléter le doc ci-dessous en ajoutant les vecteurs vitesse. 8.

9. D'après le graphe, quelle est la distance parcourue par le ballon ?

10. Compléter	le texte suivant
---------------	------------------

La trajectoire de la balle est		
La vitesse de la balle est	: elle	quand la
balle monte et	. quand elle descend.	