Qu'est-ce que l'énergie ?						
Qu'est-ce que la puissance ?						
Quelle est la relation entre la puissance, l'énergie et le temps ?						
Qu'est-ce qu'une énergie primaire ?						
Qu'est-ce qu'une une énergie fossile ?						
Qu'est-ce qu'une énergie renouvelable ?						
Pourquoi parle-t-on de « défi énergétique » ?						
1 Définition phy	sique					
L'énergie est une grandeur qui m	nesure la capacité d'un système à effectuer des transformations comme :					
•						
•						
Dans le système international d'u	unités (SI), l'énergie s'exprime					
L'unité usuelle						
L'énergie see e électrique, thermique, nucléaire,	t s'échange sous de multiples formes (cinétique, potentielle, rayonnante, chimique).					
La quantité totale d'énergie est to devient de moins en moins	oujours conservée, mais l'énergie C'est-à-dire qu'elle					
2 Lien entre puissance et énergie						
La puissance est						

On re	tiendra :				_
	(watt-heure) représer onne pendant 1 h	ite l'énergie fourni	e ou consommée	par un appareil de p	puissance 1 W qui
1 h =	donc 1 W	V.h =			
Idées	à retenir :				
•					
3	Différentes	sources d'é	energie		
Une s	ource d'énergie est un	moyen, pour les s	sociétés humaines	s d'obtenir une énerg	gie utilisable.
Exem _]	ples :				
activit	é 1 p. 84				
L'éner	rgie peut être disponik	ole sous forme de _	ou de	.	
4	Quel est le 1	problème p	osé par le	s énergies fo	ossiles?
	ombustion est une réa ustible.	ction chimique lib	eérant sous forme	de chaleur l'énergie	chimique contenu dans un
Équat	ion d'une combustion	complète :			
réchai	s les combustions éme uffement climatique. <i>rques :</i>	ettent du CO2 qui e	est un gaz à effet	de serre et principal	responsable du
Le boi	•	ssant sur le plan é	nergétique et sa	combustion produit	également du CO₂ mais
•					

- Exercices -

Exercices du livre : 6 p. 96

Conclusion.

Données:

5

- Énergie potentielle d'un objet de masse m à l'altitude h : $E_p = m \times g \times h$
- Intensité de la pesanteur : g = 10 N/kg
- Prix du kW.h: 0,1952 € (tarif bleu EDF août 2025).
- 1 litre d'essence contient environ 10 kWh d'énergie

A Cuisson d'un poulet

- 1. Calculer en J puis en kW.h l'énergie nécessaire pour cuire un poulet pendant 1 h 30 dans un four électrique fonctionnant avec une puissance de 2 000 W.
- **2.** Quel est l'intérêt d'utiliser le W.h plutôt que le Joule ?
- **3.** En déduire le coût de la cuisson sur la facture électrique.

B Montée d'un escalier

 Quelle est l'énergie dépensée par un élève de masse m = 60 kg pour monter au 2e étage du bâtiment scientifique situé à la hauteur h = 6 m? On peut considérer que l'énergie nécessaire est

- égale à l'énergie potentielle atteinte à l'altitude h. Exprimer cette énergie en J et en Wh.
- Quelle est la différence entre un élève qui monte l'escalier en 30 s et un élève qui monte l'escalier en 1 minute = 60 s ? On suppose que les 2 élèves ont la même masse.
- 3. Calculer la puissance développée par ces 2 élèves.

C Les esclaves énergétiques

- 1. SPÉ PC : un bon marcheur de masse 70 kg peut effectuer 500 m de dénivelé positif par heure. Calculer la puissance fournie par ce marcheur.
- **2.** Calculer l'énergie journalière qu'un travailleur peut fournir par son travail physique, en supposant qu'il travaille dur 10 h par jour avec une puissance moyenne de 100 W.
- 3. La consommation énergétique totale moyenne d'un Français (nourriture, transport, chauffage, vêtements, équipement...) est de l'ordre de 150 kWh par jour. Combien d'esclaves fictifs devraient être à notre service quotidiennement pour subvenir à nos besoins énergétiques ?
- **4.** Estimer le coût de l'essence qui fournirait la même énergie. Commenter le résultat.

D Consommation électrique de quelques appareils domestiques

Compléter le tableau ci-dessous.

Appareil	Puissance moyenne (W)	Durée d'utilisation /jour (h)	Énergie consommée par an (kW.h)	Coût annuel (€)
Aspirateur	900	0,25		
Box internet		18	79	
Console de jeu	75		55	
Réfrigérateur	300			